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Abstract: This work presents an analysis of the existing self-contained expressions for the volume
dependence of the Griineisen ratio  in view of their further application to EOS (equation of state) studies.

Phenomenological expressions for ) are assessed and applied to materials with the major types of chemical

bonds. Interpolation formulas were considered in a previous work of the author (Gospodinov, 2011). Predictions
from regression analysis are compared to existing experimental data sets. All expressions predict with very good
accuracy the values of ¥ at ambient conditions and its volume variation in the low and intermediate pressure

region, but fail to give correct values for its infinite compression limit. A possible reason for this is that all
experiments are performed at comparatively low pressures. Experiments, performed at higher pressures are
necessary to clarify the ability of the assessed models to predict the infinite compression limit of . The equation,

proposed by Jeanloz (1989) is the best fit to experimental data. A modification to this equation, more convenient
for use in shock physics, is proposed in the present work. It could be used jointly with the shock Hugoniot to
derive a complete EOS for solids from their response to shock-wave loading.
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Pesrome: B Hacmosiwama paboma ca aHanu3upaHu u3gecmHume (heHOMeHOMo2UYHU U3pasu 3a 3a-
sucumMocmma Ha napamembpa Ha [pioHalizeH y om obema. Tosa e HarpaseHo ¢ oeried Ha MSXHOMO
u3sron3eaHe 3a rosiydasaHe Ha Mb/IHOMO ypasHeHue Ha cbecmosiHuemo (YC) Ha mebpOu mena no peakyusma
UM ripu 83pUBHOUMITYSICHO 8b3delicmeue. Te3u u3pa3u ca fnpuIoXeHU KbM Mamepuasau ¢ OCHO8HUMe sudose
XUMUYHa 8pb3Ka. Peaynmamume, nony4eHU 4pe3 peepecuoHEeH aHanu3 ca cpasHeHU CbC Cbujecmsysawjume
ekcriepumeHmarsHu pesynmamu. Bcuuku uspa3u onuceam ¢ MHO20 0obpa moYyHOCM cmoluHocmume Ha y npu
ammochepHU ycriosusi U USMEHeHUEemo My 8 eKcriepuMeHmarnHo uscredsaHusi duana3oH om Hans2aHus. Humo
e0HO om pasenedaHume ypaeHeHusi He rnpedcka3sa MpasusiHo cmoUHocmma Ha y npu P—e~. BeeosmHa
fpuyuHa 3a moea e, 4Ye BCUYKU eKcriepuMeHmu ca npoeedeHu Mpu CPasHUMESIHO HUCKU Hals2aHusl.
YpasHeHuemo npednoxeHo om Jeanloz (1989) onucea Hali-0obpe ekcriepumeHmarnHume pe3dynmamu. B
Hacmosiwama paboma e rpednoxeHa Modughukayusi Ha mosa ypasHeHue, rMo-nodxodswya 3a npusioxeHue b8
¢usukama Ha ydapHume 8bsHU. T Moxe Oa ce usrnoniea 3aedHo cbeC yOapHama aduabama 3a nonyyasaHe Ha
nvnHomo YC Ha mebpOu mena no peakyusima UM rnpu 83pUsHOUMITyICHO 8b3delicmeaue.

Introduction

To determine the functional dependence of the Griineisen ratio on volume is a key problem in
shock physics. Results from shock-wave experiments provide direct information on the compressional
and thermal behavior of metals, ceramics, rocks, and minerals at high pressures and high
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temperatures. Unfortunately, data points are often sparsely deployed and irregularly distributed. That
is why it is a challenge, using this information, to have a go on deriving the complete EOS for solids
from their response to shock-wave loading. Have it, one can easily obtain all their thermodynamic
properties by simple differentiation.

In this way, it is possible not only to obtain a reliable interpolation tool, but to predict all
compressional and thermal properties of solids in the whole high-pressure high-temperature region,
attainable by shock-wave loading, standing on a sound physical basis.

One of the ways to derive a complete EOS for solids from their response to shock-wave
loading is to use the specific form of the volume dependence of y together with the shock Hugoniot.

That is why it is important to obtain the form of y independently of the shock Hugoniot or of an

isotherm.
The Grineisen ratio has both a statistical mechanics (microscopic) and thermodynamic
(macroscopic) definition.
The thermodynamic definition of y represents it in terms of specific heat, thermal expansion
coefficient, and bulk modulus
oP aV aVB
(2) y=v[ 2] = OB - OB
E) C, C,

where « is the thermal expansion coefficient, C,, -- the specific heat at constant volume, C, -- the

specific heat at constant pressure, B; -- the isothermal bulk modulus, and By -- the adiabatic bulk
modulus. In terms of its thermodynamic definition » may be considered the measure of the change of

pressure resulting from the increase of internal energy at constant volume. The experimental
determination of ¥, based on its thermodynamic definition implies the concurrent measurement of the
involved thermodynamic properties at high pressures or the experimental determination of the partial
derivative in Eq.(2).

The statistical mechanics definition relates it to the vibrational frequencies of the atoms in the
crystal lattice of a material

V (Ov, olnv. )
3 = —L | == ! =1,2,...,3N),
© 7 vi(aVJT (alnv]T ( )

where v, are the 3N vibrational frequencies of the crystal lattice. The volume dependence of all

lattice vibrational frequencies is assumed one and the same [1, p.~130], so

@ :_(6|nv)
7= \omv ),

The experimental determination of the Griineisen ratio from its microscopic definition is very difficult,
since it requires a detailed knowledge of the phonon dispersion spectrum of a material.

Because of the scarce experimental results and the lack of first principle analytic equation,
numerous phenomenological expressions for the volume dependence of y have been reported in

literature. They predict a varying dependence of 7 as a function of volume and some of them even

give different values for it at ambient pressure. Most of them are analyzed in two extensive reviews ---
by Knopoff and Shapiro [2], and by Anderson [3]. Their accuracies are also compared in recent works
by X. Peng et al. [5] and by Cui and Yu [6]. These papers are in the field of geophysics. It is
characteristic of them that there is an intrinsic relationship between the expressions for y, examined

there, and the cold or the normal isotherm. Many of these expressions relate y at atmospheric

pressure (P = 0) to the first derivative of the bulk modulus with respect to pressure or volume ( B;.).

To the author's knowledge, a comparison of the self-contained phenomenological expressions
for the Griineisen ratio, used in shock physics, has not been performed so far. Therefore, the objective
of the present work is to collect the most commonly used expressions for » and analyze and compare

them to existing experimental data. It differs from previous approaches [4-6, 8] in that:
o there is no intrinsic relationship between the expressions for (V) analyzed here and the

shock Hugoniot B, (V) , the cold isotherm P.(V), or an arbitrary isotherm P; (V),

o the expressions are applied to materials with various chemical bonds --- metallic (Cu , & -
Fe, K), ionic (NaCl ), and covalent (MgO).
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The scope of the research with respect to the examined materials and the maximum applied
pressure is limited by the availability of experimental data.

1. Phenomenological expressions for the Griineisen ratio

There are several stand-alone expressions for the Grineisen ratio which predict a varying
dependence of y on volume.

Jeanloz [7], starting from the second Griineisen ratio,

_(Olny
©) q_(alnvl’
assumed it to depend on volume only. The particular volume dependence he used is given by
¢
o Y]
VO
The logarithmic derivative of (,
@) ' dinqg ’
dinV

known as the third Grineisen ratio, is supposed to be a material-dependent constant.
Then, for the particular volume dependence of y, Jeanloz obtained

.
_ qQ ||V

8 = | S

(8) V= 7&Xp [q,j (VoJ

where y,, (,, and V, are the values of y, q,and V atambient conditions.
Srivastava and Sinha [8] modify Eq.(8) to introduce in it the infinite compression limit of y .
They assume y, =(12). For P - o0, i.e. V — 0, Eq.(8) yields

©) y, = %@@(—%}

Now, following the model of an oscillating lattice of ions in a uniform neutralizing background
of electrons, Eq.(9) gives

O |_1
expl —— [= =,
Yo p[ q,j 5

or d,/9"=1In(2y,) . Then, Eq.(8) takes the form

¢
Vv
(10) 7 = 7:8Xp1 In(2y,) (_J -1
VO
This equation satisfies the infinite compression limit for y,i.e.at P >0 or V. >0, y =y, =(12).
Other researchers [9-12] have favored for solids y, =(23) which follows from the degenerate

electron gas model. Therefore, Eq.(9) with ¥, = (23) should be considered as well. With (23) as the
infinite compression limit in Eq.(8), we have

o
3 \Y
11 = y.expsln| = —| -1
(11) V= 78XP (2%) [Voj
Here | propose a general form of Eq.(8) which incorporates both Egs.(10) and (11)
¢
(12) 7= 7.expslin (ﬁ] (ij -1
}/oo VO

525



In this equation y,, 7., and q' are treated as free parameters and will be determined by regression

analysis of the experimental data sets.
Rice has also derived an expression for y [13] based on its thermodynamic definition. He

makes two assumptions: first, that the Grineisen ratio y =V (0P / 0E), is a function of volume only;
and second, that the adiabatic bulk modulus B = -V ((0P/0V); is also a function of volume only.
His expression has the form:
(13) \A /V)7:(3+1/70)71-
After some rearrangements we obtain:
(14) 7=70(1_5)(1+70‘9)71r
where & =1-V /V, is the dimensionless volume.
Equations (13) and (14) give incorrect value for y,_, i.e. '0" and fail to describe adequately

any of the datasets used here. That is why they are excluded from further consideration. The results
from the calculations and a comparison of the other expressions are presented in the next section.

The values of y_ , obtained by regression analysis, are given careful consideration there as well.
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Figure 1. Volume dependence of the Griineisen ratio for Cu, Fe, MgO and NacCl
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2. Fitting the expressions for (V) to experimental data

The experimental points for the regression analysis of the models (Egs.(8, 10, 11, 12) are
taken from [14-19]. In these papers diverse variables are used for the volume dependence of y ---

plp,, n=VIV,, €¢=1-V/IV,. In the present work the relative volume &=1-V/V, is
introduced in all models.

Table 1. Experimental and calculated values of },

Yo Cu & -Fe K NaCl MgO
Experimental 2.0 1.71 1.27 1.62 1.539
value
Jeanloz [7] 1.033 1715 1.267 1618 1542
Srivastava and 1.908 1.761 1.268 1.637 1.478
Sinha [8]

This work 1.018 1.767 1.278 1.644 1.487
This work 1.033 1.745 1.267 1.620 1.542

Table 2. Coefficient of multiple determination R? and error in ¥y [%] for Cu, & -Fe,and K

E ) Cu e-Fe K
quations R? | Emoriny[%] | R? | Eroriny[%] | R? | Erroriny [%)]

Jeanloz [8] 0.966 5.634 0.999 0.342 0.998 1.067
Srivastavaand | g5, 5.437 0.984 1.828 0.998 0.972
Sinha [9]

This work 0.964 5.263 0979 2.126 0.988 2.259
This work 0.966 5.634 0.994 1.162 0.998 1.067
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Figure 2. Volume dependence of the Griineisen ratio for K
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Table 3. Coefficient of multiple determination R? and error in ¥ [%] for NaCland MgO

, NaCl MgO

Equations R2 Errorin 7 [%] R2 Errorin 7 [%]
Jeanloz [7] 0.999 0.423 0.994 1.922
Srivastava and
Sinha [8] 0.996 1.378 0.861 7.562
This work 0.992 1.916 0.879 7.059
This work 0.999 0.438 0.994 1.922

The value of y at ambient conditions y,, 7, --the value of y at P — oo, the second and

the third Grineisen ratios  and (' are the parameters to be determined from the best fit of the

experimental datasets.

The calculated results are presented in Tabls.(1) - (3) and in Figs.(1) - (2) along with the
experimental data points for comparison.

From Tabls.(1) - (3) and Figs.(1) - (2) we can see that Egs.((8) and (10) - (12) are in good
agreement with the experimental datasets. In all cases Egs. (8) and (12) have the highest and

practically coinciding coefficients of multiple determination R? and the smallest error in ¥ . The errors
in y for the other expressions are within the range of the experimental errors and the coefficients of

multiple determination R? are high enough for the models to be considered adequate.

3. The infinite compression limit of ¥

One of the considered models --- Eqg. (12) contains y, (the value of y at P—>o0). It is

assumed that at infinite pressure (P — o) solids become a crystalline one-component plasma, i.e. an
oscillating lattice of ions in a uniform neutralizing background of electrons [20, Ch.~17]. A number of
theoretical works predict ¥ = 1/2 for this limiting state of a solid. Kopyshev [21] calculated »(V) in
the Thomas-Fermi approximation and found y = 1/2 as P — . Various theoretical studies by other
authors [22-24] as well as simple dimensional arguments by Hubbard [25, p.~34] also lead to y = 1/2
as P — . Other researchers [12, and references cited therein] consider (2/3) a more appropriate
value of y_ for solids due to the fact that the linear temperature dependence of the electronic specific

heat of the degenerate free electron gas dominates over the phonon contribution when the Debye
temperature is increased sufficiently. Al'tshuler et al [14] assume 2/3 to be the infinite compression

limit of y for all materials except alkali metals, for which y,_ =1/2.
Unfortunately, none of the expressions for (V') , considered in the present work follow either
of these constraints at infinite pressure. Values for y_, obtained by regression analysis from Eq.(12)

are far from (1/2) or (2/3). The values of y_, calculated from Eq.(9) are also far from theoretical
predictions.

4. Conclusions

The most frequently used self-contained expressions for the volume dependence of the
Griineisen ratio have been considered in the present work and compared to available experimental

datafor Cu, ¢-Fe, K, MgO, and NaCl.
All expressions predict with very good accuracy values for y at ambient conditions and its

volume variation in the low and intermediate pressure region, but fail to give correct values for its
infinite compression limit. The model proposed by Jeanloz [7] and its modification in the present work
are the best fits to the experimental data sets. In view of its possible application to deriving a complete
EOS for solids from their response to shock-wave loading Eq.(12) is more convenient to use than

Eq.(8) because it contains y, instead of (,, which is not frequently used in shock physics.
None of the models, considered here, predict correct values for y_ . According to Young [20,

Ch.17] matter approaches its infinite compression state when ,0/,00 > 10, or, in terms of relative
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volume ¢ : 0.9. If we accept this criterion, we could say that the experimental data sets, used in this
work are nearer to the origin of the pressure axis than to P — 0. In the case of &-Fe [16] at
P =359.5GPa (the highest pressure in the experiments considered here) p/ p, =1.684. That is

why the predictions for y_ from the regression analysis are not good.

It is obvious that experiments at higher pressures are necessary to determine more reliably
the infinite compression limit of . Computer simulations easily surmount the limitations of laboratory

experiments. They could be used to clarify the ability of the considered models to predict the infinite
compression limit of y .

These inferences trace out a possible line for continuation of the present research. A
regression analysis of results from computer simulations, using the models, considered here, might

elucidate their ability to predict y_ .
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