
S E S ‘ 2 0 0 5

Scientific Conference “SPACE, ECOLOGY, SAFETY” with International Participation
10–13 June 2005 , Va rna , Bu lga r i a

SOFTWARE IMPLEMENTATION OF P−ADIC SELF−SHRINKING
GENERATOR FOR AEROSPACE CRYPTOGRAPHIC SYSTEMS

Zhaneta N. Tasheva, Borislav Y. Bedzhev

NMU “V. Levski”, Faculty of Artillery and Air Defense,

Karel Shorpil Str. 1, 9713 Shoumen, e-mail: tashevi86@yahoo.com, bedzhev@mail.pv-ma.bg

Key words: Cryptography, Encryption Algorithm, Stream Ciphers, PRNG, FCSR.

Abstract: To be suitable for use in aerospace cryptographic systems software-oriented stream
ciphers must be fast, uniform, scalable, consistent and unpredictable. With regard in the paper the software
implementation of a fast stream cipher, named Self−Shrinking p−adic Generator which produces 8 bits
(SSPG-8) in one clock cycle, is proposed. The theoretical base of Self-Shrinking p-adic Generator is
recalled. The software implementation of p-adic Self−Shrinking Generator is described. Analysis of more
than 300 aerospace images is presented. The results from statistical analysis show that the sequence,
generated by p-adic SSPG-8, is appropriate for a particular aerospace cryptographic application.

INTRODUCTION
The need of software-oriented stream ciphers in modern aerospace cryptographic

systems has rapidly grown during the last several years. To be suitable for use in
aerospace the stream ciphers must be fast, uniform, scalable, consistent and
unpredictable. One of the most used cryptographic systems is the binary additive stream
cipher in whitch the keystream, the plaintext and the ciphertext are basic binary
sequences. The keystream is generated from a keystream generator, which takes a secret
key as a seed, and produces a long pseudorandom sequence. The ciphertext is generated
by bitwise modulo 2 additions of the keystream and the plaintext.

The main goal of software-oriented stream cipher design is to generate efficient
pseudorandom sequence [3], [4], [5] witх fast software algorithm and with truly random
sequences properties. A fast software implementation of pseudo random number
generator (PRNG), named Self−Shrinking p-adic Generator − 8 bits (SSPG−8), is
proposed and an analysis of encrypted with SSPG−8 images is given in this paper.

THE THEORETICAL BASICS OF SELF-SHRINKING P-ADIC GENERATOR
In this section the theoretical basic of a recently proposed Self-Shrinking p−adic

Generator (SSPG) [7] and some basic SSPG properties will be recalled.

A. THE SSPG ARCHITECTURE
In contrast with the classic self-shrinking generator [3] the SSPG architecture (Fig. 1)

uses a p-adic FCSR instead of LFSR. This allows the generator to produce a number in
the range 0 to p−1 in one step (ai = [0, 1, …, p−1]). The self-shrinking p-adic generator
selects a portion of the output p-adic FCSR sequence by controlling of the p-adic FCSR
itself using the following algorithm.

 439

mailto:tashevi86@yahoo.com
mailto:bedzhev@mail.pv-ma.bg

binary
output

Memory
for 2-adic

transformation
(p−1)xlog2(p−1)

bits

output ai ≠ 0,
ai ∈ [1, p−1]

P-FCSR R

clock
ai

discard ai = 0

Fig. 1. Self-Shrinking p-adic Generator
Definition 1: The algorithm of the Self-Shrinking p-adic Generator (Fig. 1) consists of

the following steps:
1. The p-adic FCSR R is clocked with clock sequence with period τ0.
2. If the p-adic FCSR output number is not equal to 0 (ai ≠ 0), the output bit forms a

part of the p-adic SSPG sequence. Otherwise, if the output number of the p-adic FCSR is
equal to 0 (ai = 0), the p-adic output number of SSPG is discarded.

3. The shrunken p-adic SSPG output sequence is transformed in 2-adic sequence in
which every p-adic number is presented with log2 (p−1) binary digits, where x is the
smallest integer which is greater or equal to x. Every output number i from 1 to p−1 of p-
adic SSPG sequence is depicted with p−adic expansion of the number:

 

2
)1(21

)1(2log −−
+−

− pi
p

. (1)

The proposed SSPG uses the generalization of 2-adic FCSRs [1], [2] with stage
contents and feedback coefficients in Z/(p) where p is a prime number, not necessarily 2.

c2 c1 cL-1

aL-1 … a1 Σ Σ Σ a0

 … q2 qL-1 q1 qL

Fig. 2. Galois FCSR
Definition 2: A p-adic feedback with carry shift register with Galois architecture of

length L (Fig. 3) consists of L stages (or delay elements) numbered 0, 1, …, L-1, each
capable to store one p-adic (0, 1, …, p-1) number and having one input and one output;
and a clock which controls the movement of data. During each clock cycle the following
operations are performed:

1. The content of stage 0 is output and forms part of the output sequence;
2. The sum modulo p after stage i is passed to stage i - 1 for each i, 1 ≤ i ≤ L−1;
3. The output of the last stage 0 is introduced into each of the tapped cells

simultaneously, where it is fully added (with carry) to the contents of the preceding stages.

 440

The q1, q2, …, qL are the feedback multipliers and the cells denoted with c1, c2, …, cL−1 are
the memory (or “carry”) bits. If

 (2) L
L pqpqpqq ++++−= K2

211

is the base p expansion of a positive integer:
) , (3) (mod1 pq −≡

then q is a connection integer for a FCSR with feedback coefficients q1, q2, …, qL in Z/(p).
With each clock cycle, the integer sums:

 (4) jjjj cqaa += + 0σ

is accumulated.
At the next clock cycle this sum modulo p

 (5))



(mod1 pa nj σ=′
−

is passed on to the next stage in the register, and the new memory values are:

) . (6) div(pc nj σ=′

B. The SSPG Properties
In this subsection some SSPG properties and theorem will be recalled. The theorem

proofs can be found in [7]. The SSPG properties can be generalized as follows:
1. The unlinearity of SSPG is guaranteed by the fact that it is unknown at which

positions the FCSR-sequence is shrunken. As a result the linear algebraic structure of the
original FCSR-sequence is destroyed.

2. The SSPG implementation is very fast because the pseudorandom generator
produces log2 (p−1) binary digits in one step.

3. The SSPG sequence have large period. It is determined by the next theorem:
Theorem 1: The period of the self-shrunken p-adic generator realized by maximum

length p-adic FCSR of length L and connection integer q is:

 , (7) )1(2log.* −= pTSSPGT

where T* is the number of output p-adic FCSR numbers different from 0.
Here will be remind [1], [2] that the period of p-adic FCSR is T = q − 1, and within

the period of a p-adic FCSR sequence each of p−adic numbers from 0 to p − 1 appears
with approximately equal probability.

4. The SSPG sequences are balanced. It follows from the Theorem 2:
Theorem 2: The self-shrunken output SSPG sequence generated by maximum

length p-adic FCSR of length L and connection integer q is a balanced sequence.
Moreover:

a) If the prime p can be present in form p = 2n + 1, the numbers of 0s and 1s in the
self-shrunken output SSPG sequence are balanced and equal to:

 nn
n
q

sNsN .12.
12

1
10

−












+

−
≈≈ . (8)

b) if the prime p satisfies the inequality:

 441

 p < 2 log2 (p−1) + 1 (9)
the numbers of 0s and 1s in the self-shrunken output SSPG sequence are balanced and
equal to:

  
2

)1.()1(log2.
12

1
10

−−












+

−
≈≈

pp
n
q

sNsN . (10)

5. No possibility exists to appear subsequences of 2 log2 (p−1) consecutive 1s
or 0s in SSPG sequences. It is guaranteed by step 3 in Definition 1.

SOFTWARE IMPLEMENTATION OF SELF−SHRINKING P−ADIC GENERATOR

WHICH PRODUCES 8 BITS IN ONE CLOCK
As mentioned, the software-oriented steam ciphers must be fast. To satisfy this

requirement a p-adic Self-Shrinking Generator which produces 8 bits in one clock cycle is
picked out. According to this the prime p of SSPG must be in the range [129, 257], where
are 24 primes, given in Table 1.

Table 1: The primes in the range [129, 257]

131 137 139 149 151 157 163 167 173 179 181 191
193 197 199 211 223 227 229 233 239 241 251 257

Definition 3: The Self−Shrinking p−adic Generator, which seed depends on primes in

the range [129 = 27 + 1, 257= 28 + 1], generates 8 bits in one clock cycle. This generator
will be called SSPG−8 in the rest of the paper.

All binary presentations of numbers from 0 to 255 will appear in the SSPG−8 output
only if the seed of SSPG−8 depends of prime p = 257. For the other primes in the Table 1
some binary presentations of the numbers from 0 to 255 will be discarding according to the
rule, given in the step 3 of Definition 1. The binary presentations of some shrunken
SSPG−8 binary outputs with primes p = 251 and p = 241 according to (1) are shown in
Table 2.

Table 2: Binary presentation of SSG−8 output

Binary output Binary output p-adic
number p = 251 p = 241

p-adic
number

p-adic
number p = 251 p = 241

1 00000010 00001000 … 235 11101110 11101110
2 00000011 00001001 … 236 11101111 11101111
3 00000100 00001010 … 237 11110000 11110000
4 00000101 00001011 … 238 11110001 11110001
5 00000110 00001100 … 239 11110010 11110010
6 00000111 00001101 … 240 11110011 11110011
7 00001000 00001110 … 241 11110100 -
8 00001001 00001111 … 242 11110101 -
9 00001010 00010000 … 243 11110110 -

10 00001011 00010001 … 244 11110111 -
11 00001100 00010010 … 245 11111000 -
12 00001101 00010011 … 246 11111001 -
13 00001110 00010100 … 247 11111010 -
14 00001111 00010101 … 248 11111011 -
15 00010000 00010110 … 249 11111100 -
16 00010001 00010111 … 250 11111101 -

 442

The software implementation of SSPG−8 is realized in Visual C++ environment. It
uses the base template class FCSR <class T> [6], which provide a straightforward way of
abstracting type information. The template class FCSR <class T> models the p−adic
FCSR definition 2. Using templates, the design class FCSR can operate on data of many
types and the code is generated for a template class and its functions only when they are
instantiated.

The seed of SSPG-8 depends on 4 components:
• the prime p in the range [129, 257]. Here we will mention that the software

implementation can work with all numbers in above range, but when p is not
prime number the generated pseudo-random sequence won’t be the
maximum length sequence [1], [2].

• the initial state of the p-adic FCSR;
• the initial memory of the p-adic FCSR;
• the feedback polynomial of the p−adic FCSR.

The software application “Self-Shrinking p−adic Generator” (Fig. 3) realizes
SSPG−8s with primes p ∈ [129, 257]. Its general opportunities are:

1. The SSPG−8 seed has the length up to 3*256*8*24 = 147 456 bits if the initial
state, the initial memory and the feedback polynomial of the control p−adic FCSR are with
length 256 p-adic numbers. The coefficient 8 is used to present every p−adic number and
the coefficient 24 gives the number of primes in the range [129, 257].

2. The SSPG−8 seed may be changed by modifying the prime p, feedback
polynomial, initial state and initial memory of p−adic FCSR.

3. The output text file of SSPG−8 pseudo random number sequence with arbitrary
bit length, defined by user can be saved. This file can be used for statistical tests.

4. The arbitrary files (.txt, .bmp, .bin, *.*) can be encrypted and decrypted with
SSPG−8.

Fig. 3: Software application “Self−Shrinking p−adic Generator − 8 bits””

The properties of SSPG-8 cryptographic generator were been analyzing by means
of more then 300 colour BMP images encrypted with SSPG-8 sequences with different
seeds. The two used SSPG−8s with its polynomials are presented in Table 3 and the
corresponding images, encrypted with these SSPG−8s, are given on Fig. 4. As one can
see from Fig. 4 the image outlines can be identified if the length of used p-adic FCSR is
less then 3. This fact follows from the chosen magnitude of prime p.

 443

Table 3: Polynomials for SSPG−8 elements

PRNG SSPG Elements Polynomials
Initial State 121 25 98 74 12 2 119 54
Initial Memory 66 9 32 117 52 30 3 2 SSPG−81

p = 251 Taps 1 3 12 7 8 10 4 0 1
Initial State 98 200 117
Initial Memory 57 90 4 SSPG--82

p =241
Taps 1 36 123 71 8 107 47 0 19

Original image Encrypted with SSPG-81 image Encrypted with SSPG-82 image

Fig. 4: Original and Encrypted with SSPG−8s images

CONCLUSIONS
The statistical analysis of all images encrypted by above described software

implementation of SSPG−8 leads to the following conclusions:
1. The generated pseudo random sequences are uniform, balanced and have large

period.
2. The images are well encrypted, i.e. the image outlines can’t be identified even if

the length of used p-adic FCSR is small (see Fig. 4).
3. The values of three basic colour components R (Red), G (Green) and B (Blue) are

uniformly distributed on the image size (see encrypted with SSPG−81 image on Fig. 4).
4. The proposed software implementation of SSPG−8 is very fast because the

generator forms 8 binary digits (1 byte) in one clock step.

REFERENCES
[1] M. Goresky, A. Klapper, “Fibonacci and Galois Representations of Feedback-With-Carry

Shift Registers”, IEEE Trans. Inform. Theory, vol. 48, pp. 2826−2836, November 2002.
[2] A. Klapper, M. Goresky, “Feedback Shift Registers, 2-adic Span, and Combiners With

Memory”, Journal of Cryptology, Volume 10, Number 2, 1997, pp. 111-147,
http://www.math.ias.edu/~goresky/pdf/2adic.jour.pdf

[3] W. Meier, O. Staffelbach, “The Self-Shrinking Generator”, Proceedings of Advances in
Cryptology, EuroCrypt ’94, Springer-Verlag, pp. 205-214, 1998.

[4] P. van Oorshot, A. Menezes, S. Vanstone, “Handbook of Applied Cryptography”, CRC
Press, 1997.

[5] Schneier, “Applied Cryptography”, John Wiley & Sons, New York, 1996.
[6] Zh. N. Tasheva, “An Algorithm for Fast Software Encryption”, accepted for International

Conference on Computer Systems and Technologies - CompSysTech’ 2005, 16-17 June 2005,
Technical University, Varna, Bulgaria, will be published.

[7] Zh. N. Tasheva, B. Y. Bedzhev, B. P. Stoyanov, “Self-Shrinking p-adic Cryptographic
Generator”, accepted for XL International Scientific Conference on Information, Communication
and Energy Systems and Technologies ICEST 2005, June 29 – July 1, 2005, Nish, Serbia and
Montenegro, will be published.

 444

http://www.math.ias.edu/~goresky/pdf/2adic.jour.pdf

	INTRODUCTION
	A. THE SSPG ARCHITECTURE
	SOFTWARE IMPLEMENTATION OF SELF(SHRINKING P(ADIC GENERATOR WHICH PRODUCES 8 BITS IN ONE CLOCK
	CONCLUSIONS
	REFERENCES

