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Abstract 
Due to arising of instabilities in accretion discs, turbulence and vortices may formed. The 
investigations of these formations are important, because of their role for angular momentum transport 
in accretion discs. Here we present our survey of specific type of instability – baroclinic instability. We 
explain the possible reasons and mechanisms for its appearance in accretion discs. Using the 
appropriate equations we find the conditions for the vorticity formations, as a result of baroclinic 
instability work. 
 
Introduction 
 
 

It is shown by analytical consideration and three-dimensional hydro simulations (Klahr & 
Bodenheimer 2004), that in discs, particularly in protoplanetary discs, have a negative entropy 
gradient, which makes them baroclinic. Two-dimensional numerical simulation gives the result 
for an unstable baroclinic flow and for producing turbulence.  

In barotropic simulations hydrodynamical turbulence usually rapidly damps and in principle 
the barotropic flow is stable and does not engender turbulence. 

Baroclinic instability arises in rotating fluids when the surfaces of constant pressure and 
the constant density do not re-cover, there is an angle between them. Rotating centrifugally 
supported systems can be hydrodynamically unstable to non-axisymmetric perturbation under 
the influence of radial entropy gradient. Even in the cases when the flow is stable to other 
criterions, the radial entropy gradient produces Baroclinic instability and oscillates nonlinear 
waves.   

The existence of baroclinicity requires that the accretion flow has to be non-isothermal. 
Than the disc have an entropy gradient and instability may arised.  

The models of rotating stars show the deviation of initially rotation, which allows in their 
structure any rate of baroclinicity. It is supposed that turbulent motions as a source of viscous 
pressure are driven by instabilities inherent to baroclinic systems. 

The turbulent motions are in the connections with instabilities, existing in baroclinic 
systems (Cabot 1984). Such baroclinic instability is considered to be one possible mechanism 
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to evolving of turbulence in a disc. That turbulence creates pressure waves, Rossby waves 
and especially vortices in the discs. Also, the nonlinear evolution of this instability may lead to 
formation of great-scale vortically structure in the disc. 

Particularly, the non-axisymetric baroclinic instability received your energy of temperature 
variation over isobars by exchange of fluid elements near isobars and isotherms. At such non-
axisymetrical motions the angular momentum doesn't conserve and it transfers by the 
perturbation pressure. 

We represent in the paper these processes in the case of accretion discs, which are the 
hydrodynamic flow around compact object in binary star systems.   
 
 

I Conditions for baroclinicity and vorticity formations 
 
 
1. General conditions. 

 
A barotropic shear flow is in principle stable and does not develop turbulence. In 

barotropic case, hydrodynamical turbulence usually rapidly decays and is not able to sustain 
itself. How we can see this from vortical equation. Using the presentation of Lovelace 
(Lovelace at all. 1999) for this equation we show it now in this general view: 
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For a barotropic flow, the right side of this expression is zero and each element 

conserves its specific vorticity. This cannot lead to forming new vortices.  
In the other case of the non-barotropic flow the term  (STP ∇×∇∝∇×∇ρ Γ= ρPS ,  is 

the entropy of the disc matter) destroys this conservation and the pressure force may 
generate vortices in the flow. This flow proves to be baroclinic. 

S

 
 
2. The dependence of entropy variation in baroclinic discs and the influence of radial entropy 
gradient for the existence of baroclinicity. 
 

How we may explain that dependence. We start with energy balance equation for 
viscous, no ideal fluid: 
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Where: 
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Where for a viscous fluid with negligible heat flow, the rate of increase of entropy due to 
viscous dissipation is: 

(4)  ησςρ 2. 22 +∇= v
dt
dST  

where is the bulk viscosity; ς η is the shear viscosity / νρ
η =  /; dt

dΣ=σ - the shear tensor; 

Further, we need to express the conservation equation of entropy. We can combine the 
rate of viscous dissipation with equation of mass conservation to obtain the following: 
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- where the first term of left hand side express the rate of change of entropy density; the 

second term is the divergence of entropy flux; 
- the term of the right hand side denotes the rate of production of entropy;   
 
The temperature evolution is given with the expression: 
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We need to express the change of the radial entropy gradient and its direction of 

distribution. Using the relations of Klahr & Bodenheimer (2000) we may write down the next 
relation: 
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dr
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where  is the specific heat and  is the adiabatic index. vc γ
 
We are studying the case of volume density . Then we varying the values of the 

adiabatic index, corresponding to the accretion flow matters and take note to the system of 
equations (3-7). Performing an analytical consideration the obtaining result show that the 
radial entropy gradient is negative and in this reason the baroclinicity in the flow exists. It is 
seen, also, from Figure 1: 
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Fig.1. Radial entropy gradient distribution / /. )43.13.1( ÷=γ
 
 
 
II. A dependence from right hand side of vortical equation, applied for the accretion 
discs  
 

We use the Navier-Stokes equation and obtained vortical transport equation, which in 
general case is: 
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 Following the baroclinicity conditions, we turn them to our case and receive the next 

situation: 
The accretion flow consists of rotating fluid and we write down the appropriate form of the 
Navier-Stokes equation: 
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where: 
ρ  - is the mass density of the flow; we consider  than the radial entropy 
gradient exist; 

const≠ρ

v    - is the velocity of the flow; 
P  - is the pressure;  
ν  -  is the kinematic viscousity; 

( r×Ω×Ω )  - is the centrifugal force of the rotating accretion flow; 
v×Ω2  - express the Coriolis force; 
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Here, we use again a curl of this expression and we obtain the next form of the vortical 
transport equation: 
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We rewrite this equation in the form: 
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where: Ψ - is the vorticity 

D  - is the diffusion coefficient ( or matrix of the transport coefficient); 
 

We consider non-ideal, viscous, compressible fluid and we cannot neglect the right hand 
side of this equation. Following the baroclinicity conditions we need right hand side of this 
equation to be different of zero. This result means that the vorticity formations may generate 
in our baroclinic accretion flow. 

The analytical consideration shows that the diffusion coefficient in the expression (11) is 
not a constant and we may write  over  and  direction: D r ϕ
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These findings will not change the situation, the vorticity generation increased still further. 
Thereby, the second condition for the baroclinicity and relevant instability is fulfilled and we 
may assert that they operate as well in the accretion discs. 
 

Using again the relations and terms in Navier-Stokes equation and vortical transport 
equation we reach to the next conditions: 

The baroclinicity of the general flow is given by the baroclinic term (Klahr 2004): 
( ) ( ) 0,,,, ≠∇×∇ ϕϕρ zrpzr  

The important for the instability is that non-axisymetric deviations from the mean state can 
lead to the rise of the baroclinic term even in two dimensions: 

( ) ( ) 0,, ≠∇×∇ ϕϕρ rpr  
and vorticity can be generated. 
In other words, the instability can arise if there is an inclination between the density and 

pressure gradients. 
After analytical consideration and laboratory experiments, it is obtained the visual 

simulation of how does the baroclinic instability development. It is shown on the figure below. 
There are three frames in which we see different stages of baroclinic instability. In the third 
frame the instability is in its final stage and it is observe the turbulization of region over radial 
direction. 
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Fig. 2. Developing of baroclinic instability in radial direction. 
 
 
 
Conclusion 
 

The main statement for the baroclinicity, in this paper, is the negative radial entropy 
gradient. Thus also the pressure and density gradients do not point in the same direction. It is 
found that the global baroclinic instability produces turbulence in discs, which is of importance 
for angular moment transport in the flow, respectively for the existence of accretion discs. 

Our considerations are based on the hydrodynamical equations and their analytical 
simulations, applied to the accretion discs essence and properties. 

The baroclinic instability has been studied in the area of meteorology and oceanography. 
There are theoretical models and laboratory experiments, which may help us to understand 
this instability more basically. 

 
 
 

References 
 
Cabot W., 1984, ApJ, 277, 806 
Klahr H., 2004, The Global baroclinic instability in accretion discs II, Ap.J. in press, arXiv:astro-

ph/0401449 v1     
Klahr  H., Bodenheimer P., 2001, Turbulence in accretion discs. Vorticity generation and angular 

momentum transport via the Global baroclinic instability, AGM, 18, P38K 
Klahr  H., Bodenheimer P., 2000, Proceedings of: Discs, Planetesimals and Planets, (Astronomical 

Soc. Of the Pacific), vol. 219, 63 
Lovelace R.V.E., Li H., Colgate S.A., Nelson A.F., 1999, Rossby wave instability in Keplerian accretion 

disks, Ap.J.,513, 805-810 
 
 

 30 


	Daniela Andreeva
	Space Research Institute – BAS

	Abstract
	Introduction
	I Conditions for baroclinicity and vorticity formations

	Conclusion

