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Abstract: A neuro-adaptive approach for autonomous flight controller design for aerial robots is 
proposed. Three intelligent modules are implemented to control respectively the altitude, airspeed and roll angle 
of the airplane, through which the altitude and the latitude-longitude of the unmanned aerial vehicle are controlled. 
Each intelligent module consists of a conventional feedback controller and a neural network feedback controller. 
The former is provided both to guarantee global asymptotic stability in compact space and as an inverse 
reference model of the response of the controlled system. The proposed approach makes direct use of the 
variable structure systems theory. A variable structure systems-based on-line learning algorithm is developed and 
applied to the neural network controller. Results from simulated trajectory control of the Aerosonde unmanned 
aerial vehicle by using the proposed neuro-adaptive control scheme are presented. 
 
 

I.  Introduction 
 

The main purpose of the autopilot is to enable the unmanned aircraft to accomplish its mission 
autonomously, without any (or with minimal) intervention from the human operator. Three hierarchical 
levels of control can be usually identified in the modern unmanned aerial vehicle (UAV) autopilot 
systems: (i) Low-level control include control and stability loops aiming to provide airplane with 
improved dynamic stability, regulation of flight parameters, as well as tracking of basic autopilot 
commands; (ii) Mid-level control provides navigation and guidance capability to the take-off and 
landing, climb, cruise, and loiter; (iii) High-level control has to interpret the mission objectives and 
safety constraints, awareness of the current aircraft and environment conditions. 

The most widely used approach at the autopilot low-level control, currently still implements 
conventional PI and PID controllers, augmented with online gain scheduling [1]. The increasing 
complexity of today’s aircraft dynamical systems which is frequently coupled with unknown dynamics, 
modeling errors, various sorts of disturbances, uncertainties, and noise creates a need for advanced 
control design techniques that are able to overcome limitations on the traditional feedback control. 
During the last decade model-free, computationally intelligent techniques using either fuzzy logic or 
neural networks (NNs) have been investigated in order to circumvent existing difficulties in the 
autopilot low-level control [2-4]. 

The present paper addresses the design of adaptive neural network feedback controllers for 
the low level control loops of the UAV autopilot system. A variable structure systems-based (VSS-
based) on-line learning algorithm is developed and applied to the proposed neurocontrollers.  

The paper is organized as follows. Section II starts with a basic introduction to the proposed 
neuro-adaptive control approach and then explains the design of the intelligent controllers used for the 
trajectory control of the UAV. The variable structure systems-based online learning approach for 
continuous time neural networks is introduced in Section III. Section IV is devoted to the obtained 
results from simulations, and the concluding remarks are given in Section V. 

 
II. The Neuro-Adaptive Control System 
 

The approach proposed in this paper is based on the design of three neuro-adaptive control 
modules. Among them, one module has to adjust the aircraft bank angle value in order to control the 
latitude and longitude coordinates, and the other two modules are used to adjust the elevator and 
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throttle controls of the UAV in order to obtain the desired altitude value. These intelligent control 
modules acting in combination enable simple navigation of the unmanned aerial vehicle. 

The so-called feedback-error-learning concept, proposed in [5] and initially applied to control 
of robot manipulators, has been used to tune online the proposed neurocontrollers. The general 
structure of an intelligent control module is shown on Fig. 1. It relies on the parallel work of two 
feedback controllers - a neural network feedback controller (NNFC) and a conventional feedback 
controller (CFC). It is common, when applying the feedback-error-learning concept, to assume that a 
proportional plus derivative (PD) controller is used as CFC. It serves both to guarantee global 
asymptotic stability in compact space and as an inverse reference model of the response of the 
system under control. The output of the CFC is used as an error signal to update the weights of the 
neurocontroller in and in this way the latter is learning online to eliminate the conventional controller 
from the control of the system. The weakness of the approach based on the usage of a PD controller 
(and also of the obtained in this way PD-type NNFC) is that in many cases it is not possible to remove 
out the steady state error. 

When the required control performance cannot be reached by using a PD control law, then 
proportional plus integral (PI) or proportional plus derivative plus integral (PID) controllers can be used 
as CFC (thus adaptive PI-type, or PID-type neurocontrollers can be obtained respectively). The latter 
approach has been adopted and implemented in this investigation by adding one common for both 
(CFC and NNFC) blocks integrating term, placed after the summing junction for the output signals 
from the two controllers (see Fig. 1). 

Due to the highly nonlinear nature of UAV dynamics and the inference between the controlled 
parameters two PI-type adaptive NNFCs have been constructed in this work for the bank angle and 
altitude controller respectively (by implementing only P terms in the CFC blocks) and one PID-type 
neuro-adaptive controller  has been utilized to control the airspeed.  

 
Fig. 1. Block diagram of the implemented feedback-error-learning scheme for a PID-type adaptive neurocontroller. 

 
III. The Sliding Mode Online Learning Approach 
 

Most of the existing online training methods for NNs rely on the gradient descent methodology 
and involve the computation of partial derivatives, or sensitivity functions. In this respect, they can be 
considered as extensions of the well-known backpropagation algorithm for multilayer feedforward NNs 
and hence they inherit some of its major drawbacks among which, in particular, is the difficulty to 
obtain analytical results concerning the convergence and stability of the learning schemes.  

An alternative way to design a robust learning scheme is to utilize the VSS theory [6] in 
constructing the parameter adaptation mechanism of the NNs since the robustness of the variable 
structure control (VSC) scheme against unmodelled dynamics, disturbances, time delays and 
nonlinearities is well known [7]. 

Consider the two-layered feedforward NN with a scalar output, implemented as a neural 
network feedback controller. The following definitions will be used: 
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( )(1 n pW t
× ) - matrix of the time-varying connections’ weights between the neurons in the input 

and the hidden layer, where each matrix’s element ( )1ijw t  denotes the weight of the connection of 
the neuron  from its input . i j

( )( ) ( ) ( )11
2 2 , ..., 2nn

W t w t w t
×

⎡= ⎣ ⎤⎦  - vector of the connections’ weights between the neurons in 

the hidden layer and the output node. Both ( )(1 n pW t )×
 and ( )(12 pW t )×

 are considered augmented by 

including the bias weight components for the neurons in the hidden layer and the output neuron 
respectively. 

( )f ⋅  - nonlinear, differentiable, monotonously increasing activation function of the neurons in 
the hidden layer of the network (e. g. log-sigmoid or tan-sigmoid function). The derivative of the 
activation function ( )f ⋅  of the neuron i  from the hidden layer is denoted as ( )iA t  where 

(1) ( )
1

0 1 ,A

p

i ij j
j

dA t f w x B i
dt =

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟< =

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ j≤ ∀  

and AB  corresponds to its maximum value. 
The neuron in the output layer is considered with a linear activation function. 
The output signal 

i

n
Hu  of the i -th neuron from the hidden layer and the output signal of the 

network  are defined respectively as follows: ( )nu t
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n
n n

i H H
i

u t w u W U
=

= =∑
The NNFC is assumed to operate within the feedback-error-learning scheme, the general 

structure of which is presented on Figure 1. It will be assumed (due to the existence of a CFC 
controller in the scheme) that the input vector of the NNFC and its time derivative are bounded, i.e. 

(4) ( ) ( )2 2
1 ... p XX t x t x B= + + ≤ t∀  

(5) ( ) ( ) ( )2 2
1 ... p XX t x t x t B= + + ≤ &

& & & t∀  

with  and  being known positive constants. XB XB &

 Due to the physical constraints, it is also assumed that the magnitude of all vectors row 
 constituting the matrix  and the elements of the vector ( )1iW t ( )1W t ( )2W t  are bounded, i.e. 

(6) ( ) ( ) ( ) ( )2 2 2
1 2 11 1 1 ... 1i i i ip WW t w t w t w t B t= + + + ≤ ∀  

(7) ( ) 22i Ww t B t≤ ∀  

for some known constants  and , where 1WB 2WB 1,2,...,i n= .  

( )u t  and  are also considered as bounded signals, i.e. ( )u t&

(8) ( ) uu t B≤ ,     ( ) uu t B t≤ ∀&&  

where  and  are positive constants. uB uB&

A VSC-based on-line learning algorithm is applied to the NNFC in this investigation. The zero 
adaptive learning error level for the controller ( ), n

cs u u  is defined as follows: 

(9) ( ),n c n
cs u u u u u= = +  

with λ  being a constant determining the slope of the sliding surface.  
Definition 1. A sliding motion will have place on a sliding surface ( ) ( ), 0n c

cs u u u t= = , after a 

hitting time , if the condition ht ( ) ( ) ( ) ( ) 0c c
c cs t s t u t u t= <& &

) ( ), ,h ht t t⎡ ⊂ −∞⎣

 is satisfied for all t  in some nontrivial semi-

open subinterval of time of the form .  
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The learning algorithm for the NNFC weights ( )1W t  and ( )2W t  has to be derived in such a 
way that the sliding mode condition of definition 1 will be enforced. 

Let us denote as “ ( )csign s ” the signum function, defined as follows 

(10)  ( )
( )
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1 0
0 0
1 0

c

c c

c

for s t
sign s for s t

for s t
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To enable  is reached, the following theorem is introduced. 0cs =

Theorem 1. If the adaptation law for the weights ( )1W t  and ( )2W t  of NNFC is chosen 
respectively 
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with α  being sufficiently large positive constant satisfying 1 2A W WXnB B B B Buα > & &+  then, given an 

arbitrary initial condition , the learning error ( )0cs ( )cu t  will converge to zero during a finite time  
which may be estimated as 
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and a sliding motion will be maintained on 0cu =  for all . ht t>

 Proof. Consider 21
2cV s= c   as a Lyapunov function candidate. Then differentiating  yields: cV
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where ( )iA t , ( )
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i ij j
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d ,AA t f w x B
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⎢ ⎥⎜ ⎟< = ≤ ∀

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ i j  is the derivative of the neurons’ activation 

function ( )f ⋅ , and AB  corresponds to its maximum value.  

The inequality (13) means that the controlled trajectories of the learning error ( )cs t  converge 
to zero in a stable manner. The convergence will takes place in finite time which is estimated by eq. 
(12) (see prove in [7]). 

 
I  
V.  Simulation Results 
The effectiveness of the proposed sliding mode neuro-adaptive control approach has been 

tested by implementing simultaneously the three low-level control loops under investigation for the 
trajectory tracking control of airplane. A standard configuration of MATLAB/SIMULINK by The 
Mathworks, Inc. and the Aeronautical Simulation Block Set (AeroSim) [8], have been used as 
development platform for the flight control system design. The dynamic model of the Aerosonde UAV 
[9] has been utilized for the conducted tests. Additionally, to ease the design process, the Microsoft 
Flight Simulator has been used to get visual outputs about the flight of the Aerosonde UAV and to see 
its physical response. A number of studies were carried out for different flight scenarios. For the 
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results reported in this paper, a worst case approach was adopted, in which the reference signals for 
all the controlled variables are allowed to change simultaneously. The reference trajectories used for 
the simulation studies are given below, where ( )1dX t , ( )2dX t , and ( )3dX t  are the desired bank 
angle, speed and altitude, respectively. 
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Fig. 3. Airspeed tracking and tracking error with the 
proposed PID-type neuro-adaptive control scheme. 

Fig. 2. Airspeed tracking and tracking error with 
conventional PID controller. 

 

  
Fig. 4. Altitude tracking and tracking error with 

conventional PI controller. 
Fig. 5. Altitude tracking and tracking error with the 
proposed PI-type neuro-adaptive control scheme. 

  

  
Fig. 7.Bank angle tracking and tracking error with 

the proposed PI-type neuro-adaptive control 
scheme. 

Fig.6. Bank angle tracking and tracking error with 
conventional PI controller. 

 
 In order to evaluate the performance of the proposed neuro-adaptive control schemes, similar 

simulation studies were carried out with well tuned conventional PI controllers (PID in case of elevator 
control). The tracked desired values of the airspeed, altitude and bank angle and the corresponding 
tracking errors when conventional controllers are used alone and with the proposed neuro-adaptive 
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controllers are presented on Figures 2, 4, 6 and Figures 3, 5, 7 respectively. As it can be seen from 
the results the sum-squared values of the tracking errors when the proposed intelligent control 
modules are used are by order of magnitude smaller than those of the conventional controllers 
working alone. 

  
V. Conclusion 
 

A novel approach for design of model-free adaptive neural network feedback controllers for 
the low level control loops of UAV autopilot is introduced. The controlled system is under a closed-loop 
simultaneously with two controllers: a conventional controller and an adaptive variable structure neural 
network controller. Results obtained from a simulated trajectory control of Aerosonde unmanned aerial 
vehicle demonstrate the feasibility of the sliding mode learning neuro-adaptive controllers. In order to 
be able to have a basis for comparison, well-tuned PI and PID controllers are also designed for the 
same control loops. It is seen that the performance of the proposed intelligent control modules is by 
order of magnitude better compared to those obtained from the conventional controllers when used 
alone (calculated as the sum-squared tracking error). Another prominent feature that should be 
emphasized is the computational simplicity of the proposed approach. 
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