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Abstract: [JuHamukama Ha cucmemu om mpu uniu rogevye mesia 06UKHOBEHO BK/IHOY8a (hU3UYECKU MPoUeEcU,
U38€CMHU Kamo pe3oHaHcu Ha cpedHomo O8uxeHue U CeKyrnspHu nepmypbayuu. MTbpgume ce nosiesigam, Ko2amo
Odsolika mena umam opbumarnHu nepuodu, YUemo CbOMHOWeHUe Moxe npubnusumernHo da ce npedcmasu Kamo
CbOMHOWeHuUe Ha 08e MasKu yenu yucna. Bmopume ca cbujecmeeH ¢hakmop rpu uscriedeaHe Ha ObrieospemMesama
esosoyusi Ha cucmemama. [JuHamu4yHama egorioyus Ha Hal MosloguHama om Uu38ecmHume rnnaHemume 8 MyJsnmu-
nnaHemapHUme U38bHC/TbHYE8U cucmemu ce OOMUHUPpa Oom CeKynspHume pe3oHaHcu. Hal-yecmo eonemume
eKcyeHmpuyumemu Ha nnaHemapHume opbumu nocmassm no® CbMHEHue rosie3Hocmma Ha mpaduyuoHHama
cekynsapHa meopusi Ha flagpaHx-/lannac npu aHanusa Ha OsuxeHue. Ta3u meopusi Moxe Oa 6bde obobuwieHa 0o
yemebpmu nopsAdbK 8 eKkcueHmpuyumema, cried koemo 0a ce cpasHsea C 4ucrieHume pe3ynmamu. Yacm om
usgodume, 00 KOumoO ce cmuea 8 pe3ynmam Ha me3u cpasHeHus, ca - JlagpaHx-/lannacoeama meopusi Ha
cekynspHama OuHamuka e cnab uHOukamop (UHcmpymeHm) 3a rnpedcka3eaHe Ha CeKyssspHama OuHamuMma Ha
U3BBLHC/TbHYEBU [laHemapHu CcucmeMu, HO € [10fIe3eH UHCMPYyMeHm [1pu [peyu3Homo onpedensiHe Ha

Obnaoepemeeama OuHaMu4yHa €e80/1iyuAa Ha cucmemu om marsiku mersa c op6umu, 6n1usKku 0o Kpbeosume.
Secular Interactions - Basic Theory
Here we outline the basic theory of secular interactions as applied to the planetary systems. Since this

topic has been well studied, the review and the results are brief. .
The equations of motion for eccentricity €, (to the second order in eccentricity and inclination angle) and

argument of periastron (o decouple from those of inclination angle and the ascending node. Following

standard convention (Murray & Dermott 1999), we work with the variables defined by:
1) h,=esin@;, and k; =e, cosam,,
where the subscript i refers to the i-th planet in an N planet system. The basic equations of motion for the
theory can then be written in the form
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where R; is the secular part of the disturbing function, n; is the mean motion of the i-th planet and a; is its

corresponding semi-major axis. To consistent order in this approximation, the relevant terms in the disturbing
function take the form

1
®3) R =na/ {E Ael + D Acee, cos(@, —a, )}
k#i
The physics of these interactions is thus encapsulated in the NxN matrix Aij , where the number N of planets

in the system is usually N = 2 or 3 for the systems observed, to date. The matrix elements can be written in
the form

1 m — GM.
(4) Aii = ni Z;maikaikb;z(aik)ﬁ'sa

and
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In the diagonal matrix elements (eq. [4]) it is included the leading order correction for general relativity (c is

*

c’a,

the speed of light). Although these terms are small, i = <<1, such small corrections to the

eigenfrequencies can be important, especially when the system is near resonance. The quantities ¢; are

defined such that o, =a,/a,(a,/a;) if a <a,(a, <a;). The complementary quantities «; are
. _ . — . -, 1

defined so that @, =a,/a, =, if & <a,,but &, =1 for a, < a,. Finally, the quantities b?, («, ) and

b{?) (e, ) are Laplace coefficients.
With the above definitions, the resulting solution takes the form

©®  hy =) Aysin(it+B), k=D Ajcos(At+f),

where the A, are eigenvalues of the matrix Aij and the Aji are the corresponding eigenvectors. The
phases f; and the normalization of the eigenvectors are determined by the initial conditions, i.e., the values

of eccentricity € and argument of periastron T for each planetat t =0.

Applicationsto Extrasolar Planetary Systems. Eccentricity Distributions and Secular Time Scales

We use the theory of secular interactions to show the relationship between the observed values of
eccentricity and the underlying distribution of eccentricities that characterize the systems. We use
interactions, and their absence, to place new constraints on observed multiple planet systems. We can find
constraints on the possible existence of additional small (terrestrial) planets in these systems by requiring
that any such planets must reside far from a secular resonance. As an application of secular interaction
theory, we use the formalism described above to calculate the variations in eccentricity in a sub-sample of

observed extrasolar planetary systems. The eigenvalues A, for the multiple planet systems calculate and
convert into time scales for a collection of 16 observed multiple planet systems. Most of these multiple planet

systems have secular interaction time scales in the range 10° —lOsyr. These time scales are much longer
than any possible observational baseline (tens of years), but much shorter than the system lifetimes (which
are typically several Gyr). The shortest secular time scale occurs for the GJ 876 system. Although the
dynamics of this system are dominated by the 2:1 resonance between planets “c” and “b”, the secular
interaction time 7 = 4.4 yr gives an excellent estimate of the time scale for dynamical interaction in the
system. Indeed, radial velocity fits to the system must take into account the planet-planet interactions in
order to obtain an acceptable fit.

These secular interaction times are thus long enough that observations can determine the eccentricity
(and longitude of periastron) with high accuracy at the present epoch. Over much longer time scales that are
not observationally accessible, however, the eccentricity (and longitude of periastron) will vary according to
the appropriate secular cycles. As a result, attempts to explain the observed (a, €) plane must take the
possibility of secular variations into account. The effect of secular interactions on the observational
interpretation of these systems is that the measured eccentricity values are a particular sampling of an
underlying distribution. Within the context of leading order secular theory, the distribution of eccentricity is
determined by the above formalism. For each of the observed multiple planet systems considered here
calculates the expected time variations of eccentricity and longitude of periastron according to secular

theory. From this time series were extracted the mean eccentricity<e>, the variance o, of the distribution,

the minimum eccentricity value €_;, and the maximum value €, . The difference between the observed

values and the mean eccentricities averaged over many secular cycles can be substantial (more than a
factor of two). The width of the distribution can also be significant.

For the case of two planet systems, the formalism produces simple analytic expressions for the
parameters of the eccentricity distribution. The distribution itself can be derived by taking the solution of
equation (6) and solving for the eccentricity as a function of time. Since time is distributed uniformly, the
resulting expression can be solved for the corresponding distribution of eccentricity, which can then be
written in the form
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where Aji are the eigenvectors. This form of the eccentricity distribution (for the i-th planet) is valid between
the extremes given by
® e ‘Ajl + 2\ .

max ’ min

The mean value of the distribution can be evaluated from its definition (e) = J'e(dP/de)de and takes the

form
2 A
©) <e>j :;(Ajl-i_Ajz)E(m)’

Where E(M) is the elliptical integral of the second kind (Abramowitz & Stegun, 1970) with parameter

. A A .
m =4(#?. Notice that the parameter M can be negative and hence care must be taken in
AL+ A

evaluating E(M). The corresponding variance of the distribution is given by
4 .
2 2 2 2 2
(10) o2 =A% +A%, —?(Ajl + A, PE)]

For two-planet systems, it has verified that these expressions for the mean, extrema, and variance of the
distribution are in good agreement with those found via sampling of the secular solutions as described
above.

Conclusion

Through dynamical interactions, described here using secular theory, the orbital eccentricities in
multiple planet systems vary over secular time scales. The eccentricities measured by ongoing planet
searches represent the current eccentricity value, which is drawn from a wider distribution of values sampled
by the planet. In other words, the eccentricities in multiple planet systems should not be considered as
particular values, but rather as distributions of values. The widths of these eccentricity distributions can be
substantial and it has verified that secular theory predicts distribution widths that are in good agreement with
direct numerical integration. For the simplest case of two planet systems, the resulting distribution of
eccentricity can be found analytically (egs. [7 — 10]). The time scale for secular eccentricity variations is
typically thousands of, much longer than observational survey time scales (tens of years) and much shorter
than the system lifetimes (few Gyr). Secular interactions can add to our understanding of these forthcoming
multiple planet systems in a variety of ways. In trying to find theoretical explanations for the observed orbital
elements, one must take into account the distributions of eccentricities driven by secular interactions. In
systems with known giant planets, the search for Earths can be guided by studying the forced eccentricity
variations. In other systems, we can deduce the presence or absence of additional (undetected) planets —
or at least constrain their properties — through examination of the properties of the detected planets. Over
longer time spans, secular interactions combine with tidal circularization and energy dissipation processes.
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